
7843 Power Tube Conduction-Cooled UHF Beam Power Tube

- Cermolox® Construction
- Oxide-Coated Cathode
- Conduction Cooled
- Peak Power Output: 400 MHz - 80 W 1215 MHz-40W

BURLE 7843 is a compact, conduction-cooled UHF beam power tube designed for applications where air cooling may not be practical. The tube features Cermolox construction, a unipotential, oxide-coated cathode, and an integral aluminum alloy conduction cylinder for high thermal conductivity.

The tube is rated as an AF power amplifier and modulator, and up to 1215 MHz as a linear RE power amplifier, an anode-modulated RE power amplifier in Class C telephony service, an RE power amplifier and oscillator in Class C telegraphy service, and an RE power amplifier in Class C EM telephony service. The 7843 may also be useful in a variety of other applications such as frequency multipliers, linear RE power amplifiers (AM or television), pulse modulators, pulsed RE amplifiers, regulators, or other special services.

This data sheet gives application information unique to the BURLE 7843. Information contained in the following publications will help to assure longer tube life and safer operation:

TP-105 Applications Guide for BURLE Power Tubes

TP-118 Applications Guide for Forced-Air Cooling of BURLE Power Tubes

TP-122 Screen-Grid Current Loading and Bleeder Considerations

For copies of these publications, contact your BURLE representative or write BURLE INDUSTRIES, INC., Tube Products Division, 1000 New Holland Avenue, Lancaster, PA 17601-5888.

* Erie Specialty Products, Inc., 645 West 11th Street, Erie, Pennsylvania 16512

General Data Electrical

Heater for Oxide-Coated Unipotential Cath	ode:		
Voltage (AC or DC)		26.5 ±	10%
Current at 26.5 volts			0.5 A
Minimum heating time		2 mi	nutes
Mu-Factor, Grid No.2 to Grid No.1			18
Direct Interelectrode Capacitances ¹ :			
Grid No.1 to anode	0.065	max	pF
Grid No.1 to cathode & heater	13		pF
Anode to cathode & heater	013	max	pF
Grid No.1 to grid No.2	17.5		pF
Grid No.2 to anode	4.7		pF
Grid No.2 to cathode & heater	0.45	max	pF
Mechanical			
Operating Position			Any
Overall Length		1.880" ±	.050"
Greatest Diameter		1.120	max.
Terminal Connections	See Dime	nsional C	utline
For operation up to 400 MHz			
Socket, including Grid-No.2			
Bypass Capacitor	Erie	e* 9819-0	00, or
		equi	valent
Grid-No.2 Bypass Capacitor	Erie	e* 2929-0	01, or
		equi	valent
For operation at high frequencies			
See Preferred Mounting		Р	age 4
Arrangement			
Weight (Approx.)			2 oz.
Thermal			
Terminal Temperature (Anode, grid No.2,	250	max.	°C
grid No.1, cathode, and heater)			
Anode-Core Temperature	250	max.	°C

See **Dimensional Outline** for temperature-measurement points

AF Power Amplifier & Modulator-Class AB1			Anode-Modulated RF Power Amplifier - Class C					
Maximum CCS Ratings, Absolute-Maximum Values			Telephony					
DC Anode Voltage		1000	volts	Carrier conditions per tube for u	se with	a max. r	modulation fa	actor of
DC Grid No.2 Voltage		300	volts	1.0				
Max. Signal DC Anode Current		180	mA	Maximum CCS Ratings, Absolute-Maximum Values		Values		
Max. Signal Anode Input		180	watts				Up to 1215 MHz	
Max. Signal Grid No.2 Input		7	watts	DC Anode Voltage			800	volts
Anode Dissipation		115	watts	DC Grid No.2 Voltage			300	volts
				DC Grid No.1 Voltage			-1 00	volts
Maximum Circuit Values				DC Anode Current			150	mA
Grid No.1 Circuit Resistance Under Ar	ny Condition:			DC Grid No.1 Current			30	mA
	30,000		ohms	Anode Input			120	watts
With cathode bias	N	ot Recom	mended	Grid No.2 Input			4.6	watts
Typical CCS Operation				Anode Dissipation			75	watts
Values are for 2 tubes.				/ mode Dissipation			70	watto
DC Anode Voltage	650	850	volts	Typical CCS Operation				
DC Grid No.2 Voltage	300	300	volts				At 40	0 MHz
DC Grid No.1 Voltage:				DC Anode Voltage		400	0 700	volts
From fixed-bias source	-15	-15	volts	DC Grid No.2 Voltage		200	0 250	volts
Peak AF Grid No.1 to Grid No.1	30	30	volts	DC Grid No.1 Voltage		-20	-50	volts
Voltage	00	00	Л	DC Anode Current		100	0 130	mA
Zero-Signal DC Anode Current Max-Signal DC Anode Current	80 200	80 200	mA mA	DC Grid No.2 Current			5 10	mA
Zero-Signal DC Grid No.2 Current	200	200	mA	DC Grid No.1 Current			5 10	mA
Max-Signal DC Grid No.2 Current	20	20	mA	Driver Power Output (Approx.)			2 3	watts
Effective Load Resistance	20	20	1117 (Useful Power Output (Approx.)		10		watts
(Anode to Anode)	4330	7000	ohms	Oserai i owei Odipai (Approx.)			0 43	watts
Max-Signal Driving Power (Approx.)	0	0	watts	Maximum Circuit Values				
Max-Signal Power Output (Approx.)	50	50	watts	Grid No.1 Circuit Resistance under Any Condition 30,000 o			0 ohms	
AF Power Amplifier & Modulator - C	lace AR2			RF Power Amplifier & Oscillat	or - Cla	ss C Tel	legraphy	
Maximum CCS Ratings, Absolute-M		ues		and RE Power Amplifier - Clas				
DCAnode Voltage	axiiiaiii va	1000	volts	Maximum CCS Ratings, Absol		•	Values	
DC Grid No.2 Voltage		300	volts	Up to 1215		215 MHz		
Max-Signal DC Anode Current		180	mA	DC Anode Voltage			1000	volts
Max-Signal DC Grid No.1 Current		30	mA	DC Grid No.2 Voltage			300	volts
· ·				DC Grid No.1 Voltage			-100	volts
Max-Signal Anode Input		180	watts	DC Anode Current			180	mA
Max-Signal Grid No.2 Input		7	watts	DC Grid No. 1 Current ²			30	mA
Anode Dissipation		115	watts	Anode Input			180 max.	watts
Typical CCS Operation				Grid No.2 Input			7	watts
Values are for 2 tubes.				Anode Dissipation			115	watts
DC Anode Voltage	650	850	volts					
DC Grid No.2 Voltage	300	300	volts	Typical CCS Operation				
DC Grid No.1 Voltage:				At 400 MHz				5 MHz
From fixed-bias source	-15	-15	volts	DC Anode Voltage	400	900	900	volts
Peak AF Grid No. 1 -to-				DC Grid No.2 Voltage	200	300	300	volts
Grid No.1 Voltage	46	46	volts	DC Grid No.1 Voltage DC Anode Current	-35 150	-30 170	-22 170	volts
Zero-Signal DC Anode Current	80	80	mA	DC Grid No.2 Current	5	170	170	mA mA
Max-Signal DC Anode Current	355	355	mA m ^	DC Grid No. 1 Current	3	10	4	mA
Zero-Signal DC Grid No.2 Current	0 25	0 25	mA m^	Driver Power Output (Approx.)	3	3	5	watts
Max-Signal DC Grid No.2 Current Max-Signal DC Grid No.1 Current	25 15	25 15	mA mA	Useful Power Output (Approx.)	23	80	40	watts
Effective Load Resistance	10	10	IIIA		-		-	
(Anode to anode)	2450	3960	ohms	Maximum Circuit Values				\ ala
Max-Signal Driving Power (Approx.)	0.3	0.3	watts	Grid No.1 Circuit Resistance und	aer Any	Conditio	on 30,000) ohms
Max-Signal Power Output (Approx.)	85	140	watts					
· · · · · · · · · · · · · · · · · · ·								

Linear RF Power Amplifier, Class AB

Single-Sideband Suppressed-Carrier Service

Peak envelope conditions for a signal having a minimum peak-to-average power ratio of 2.

Maximum CCS Ratings, Absolute-Maximum Values

	Up to 12	I D IVIMZ
DC Anode Voltage	1000	volts
DC Grid No.2 Voltage	300	volts
DC Anode Current at Peak of Envelope ³	250	mA
DC Grid No.1 Current	30	mA
Anode Input	180	watts
Grid No.2 Input	7	watts
Anode Dissipation	115	watts

Maximum Circuit Values

Grid No. 1 -Circuit Resistance Under Any Condition:

With fixed bias 25,000 ohms

With fixed bias

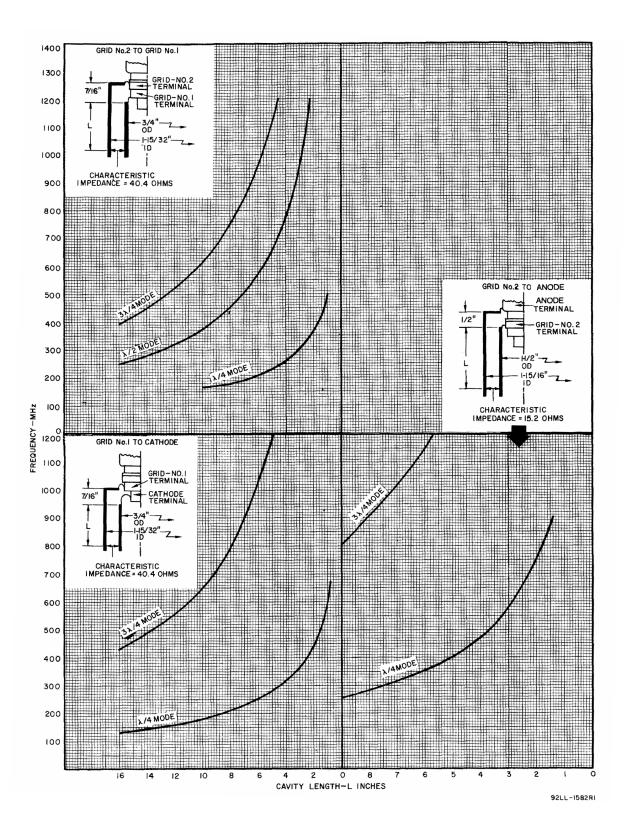
(In Class AB₁ operation) 100,000 ohms With cathode bias Not Recommended

Typical AB₁ CCS Operation with "Two-Tone" Modulation:

		At	30 MHz
DC Anode Voltage	660	850	volts
DC Grid No.2 Voltage	300	300	volts
DC Grid No.1 Voltage	-18.5	-18.5	volts
Zero-Signal DC Anode Current	40	40	mA
Effective RF Load Resistance	2200	3500	ohms
DC Anode Current at Peak of Envelope	100	100	mA
Average DC Anode Current	75	75	mA
DC Grid No.2 Current at Peak of Envelope	8.2	4.2	mA
Average DC Grid No.2 Current	3.6	1.7	mA
Peak-Envelope Driver Power Output			
(Approx.)	0.5	0.5	watt
Output-Circuit Efficiency (Approx.)	90	90	%
Distortion Products Level:			
Third Order	35	30	dB
Fifth Order	36	36	dB
Useful Power Output (Approx.):			
Average	12.5	20	watts
Peak envelope	25	40	watts

Characteristics Range Values

	Min.	Max.	
Heater Current ⁴	0.48	0.60	Α
Direct Interelectrode Capacitances:			
Grid No.1 to anode ¹	-	0.065	pF
Grid No.1 to cathode & heater ¹	11 .0	15.0	pF
Anode to cathode & heater'	-	0.013	pF
Grid No.1 to grid No.2 ¹	15.0	20.0	pF
Grid No.2 to anode1	4.2	5.2	pF
Grid No.2 to cathode & heater ¹	-	0.45	pF
Grid No.1 Voltage ^{4,5}	-9	-18	volts
Grid No.1 Cutoff Voltage ^{4,6}		-48	volts


Grid No.1 Current ^{4,7}	6		mA
Reverse Grid No. 1 Current ^{4,5}	-	8	uA
Grid No. 2 Current ^{4,5}	-4.7	+ 2.0	mA
Peak Emission ^{4,7}	-	300	peak volts
Interelectrode Leakage Resistance ⁸	1.0	-	megohm
Useful Power Output9	85	-	watts

Notes

- Note 1: Measured with special shield adapter.
- Note 2: In applications where the frequency is less than 80 MHz and the bias is less than -50 volts, the maximum value is 40 mA
- Note 3: The maximum DC anode current at peak of envelope is 250mA DC for a signal having a minimum peak-to-average power ratio of 2. During short periods of circuit adjustment under "Single-Tone" conditions, the average anode current may be as high as 250 mA. The maximum rating for a signal having a minimum peak-to-average power ratio less than 2, such as is obtained in Single-Tone operation, is 180 mA.
- Note 4: with 26.5 volts AC or DC on heater.
- Note 5: With DC anode voltage of 1000 volts, DC grid No.2 voltage of 300 volts, and DC grid No.1 voltage adjusted to give a DC anode current of 115 mA.
- Note 6: With DC anode voltage of 1000 volts, DC grid No.2 voltage of 300 volts, and DC grid No.1 voltage adjusted to give a DC anode current of 1 mA.
- Note 7: With grid No.1, grid No.2, and anode tied together; and pulse voltage source connected between anode and cathode. Pulse duration is 2 microseconds, pulse repetition frequency is 60 pps, and duty factor is 0.0001 2. The voltage-pulse amplitude is adjusted until a peak cathode current of 10 amperes is obtained. After 1 minute at this value, the voltage-pulse amplitude will not exceed the value specified.
- Note 8: With tube at 20° to 30 °C for at least 30 minutes without any voltages applied to the tube. The minimum resistance between any two adjacent electrodes as measured witha 200-volt Megger-type ohmmeter having an internal impedance of 1.0 megohm, will exceed the value specified.
- Note 9: In a single-tube, grid-driven coaxial-tuned amplifier circuit at 400 MHz and for conditions with 24.0 volts AC or DC on heater, DC anode voltage of 1000 volts, DC grid No.2 voltage of 300 volts, grid No. 1 voltage adjusted for DC anode current of 180 mA maximum, DCgrid No.1 current 30 mA maximum and driver power output of 3.3 watts maximum.

Warning Personal Safety Hazards

Electrical Shock — Operating voltages applied to this device present a shock hazard.

Figure 1- Tuning Characteristics

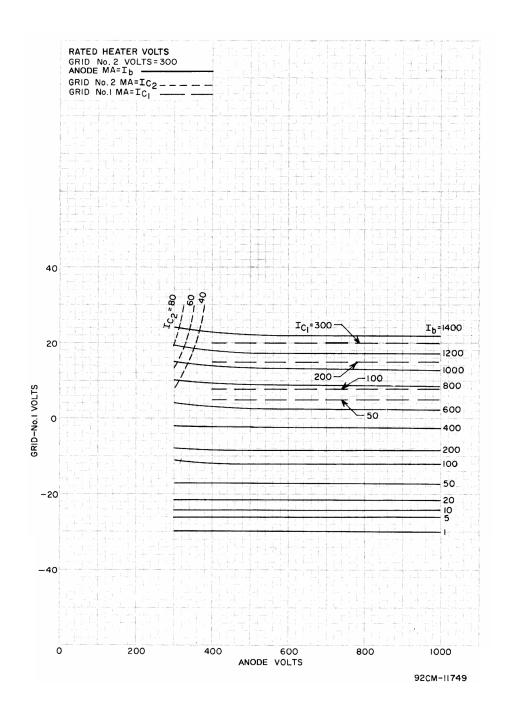


Figure 2 - Typical Constant-Current Characteristics With Grid No.2 Volts = 300

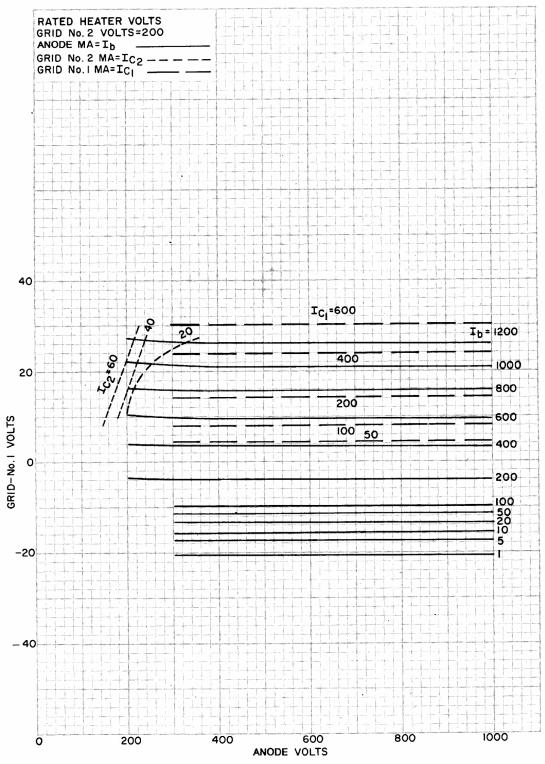


Figure 3 - Typical Constant-Current Characteristics With Grid No.2 Volts = 200

Conduction Properties of the Tube

The conduction cylinder is an aluminum alloy with high thermal conductivity to conduct the heat of anode dissipation to the surface of the cylinder. The cooling system for a given application should be designed to dissipate the heat from the tube. The permissible anode dissipation for this type may be calculated from the equation:

$$W = KA \xrightarrow{(T_2 - T_1)}$$

using 2.2 square inches for the maximum area of conductioncylinder walls. An additional 0.6 square inch is available on top on the conduction cylinder. The matching coupler to the tube should have a surface to provide intimate thermal contact with the cylinder. See reference 7.

It may also be necessary to couple grid No.2, grid No. 1, cathode and heater terminals to the heat sink. In all cases it is necessary to maintain the conduction cylinder and all seals at a temperature under the maximum temperature of 250 °C. Tube life can be substantially increased by maintaining the conduction cylinder and seal temperatures at lower temperatures.

References

- J. E. Brosz and R. H. Decker, "Beryllia Aids Equipment Cooling", Electronic Equipment Engineering, January 1960.
- D. W. White, Jr. and J. E. Burke, "The Metal Beryllium" (book) published by the American Society for Metals, Cleveland, Ohio.
- Donald P. O'Neil, "Toxic Materials Machined Safely", American Machinist, June 4, 1955.
- Sidney Laskin, Robert A. N. Turner, and Herbert E. Stokinger, "Analysis of Dust and Fume Hazards in a Beryllium Plant", U.S. Atomic Energy Commission, MDDC-1355.
- James J. Gangler, "Some Physical Properties of Eight Refractory Oxides and Carbides", American Ceramic Society Journal, Vol.33, December 1950.
- W. D. Kingery, J. Francl, R. L. Coble, and 1. Vasilos, "Thermal Conductivity X- Data for Several Pure Oxide Materials Corrected to Zero Porosity", American Ceramic Society Journal, Vol.37, February 1954.
- Graff, "Thermal Conductance Across Metal Joints", Machine Design, September 15, 1960.

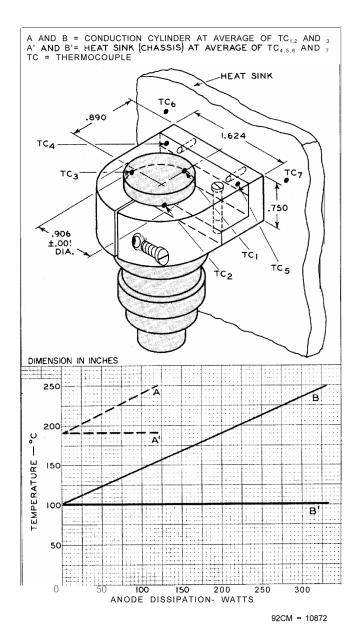
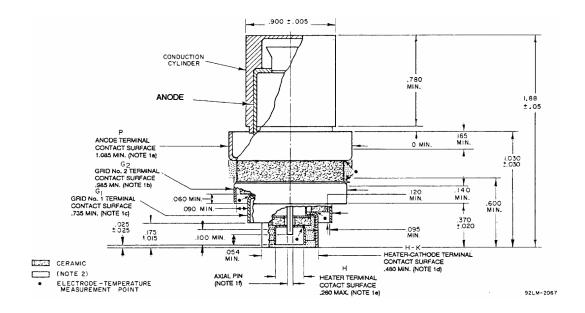
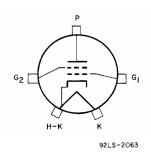



Figure 4 – Cooling Characteristics Of Typical Clamp Conduction Cooling System

Dimensions in inches.


Note 1: The following diametrical space requirements accommodate the concentricity of the cylindrical surfaces of the axial pin and each electrode terminal:

- a. Anode Terminal 1.120"
- b. Grid Terminal 1.020"

- c. Grid No. 1 Terminal 0.765"
- d. Heater-Cathode Terminal 0.520"
- e. Heater Terminal 0.238'
- f. Axial Pin 0.072"

Note 2: Keep all stippled regions clear. Do not allow contacts or circuit components to protrude into these annular volumes.

Figure 6 - Dimensional Outline

See Dimensional Outline for Terminal Connections

Note 1: If a clamp is used, it must be adjustable in a plane normal to the major tube axis to compensate for variations in concentricity between the conduction cylinder and the contact terminals.

Note 2: Contact ring No.97-252 or finger stock No.97-380.

Note 3: Contact ring No.97-253 or finger stock No.97-380.

Note 4: Contact ring No.97-254 or finger stock No.97-380.

Note 5: Contact ring No.97-255 or finger stock No.97-380.

Note 6: Either specified contact ring of preformed stock or finger stock No.97380

provide adequate electrical contact, but the finger stock No.97380 is less susceptible to breakage than the specified contact ring. Both types are made by Instruments Specialties Co., P.O.Box A, Delaware Water Gap, PA 18327

Figure 6 - Terminal Diagram

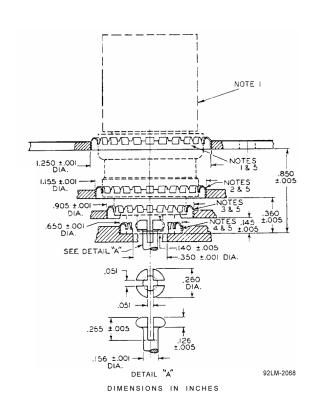


Figure 7: Preferred Mounting Arrangement